Let's Stay Together: Towards Traffic Aware Virtual Machine Placement in Data Centers

Xin Li, Jie Wu, Shaojie Tang, Sanglu Lu

Nanjing University Temple University

Outline

- Background and Scenario
- Problem Statement
- Homogeneous Case
- Heterogeneous Case
- Conclusion

Background

- Virtual machine (VM) placement
 - Tenants submit their resource requirements to the cloud system, and the cloud decides how to implement the resource allocation.
 - One of the primary task in virtualizationbased cloud system.
- The cost is one of the major concerns for the cloud providers.
 - PM-cost
 - N-cost

Scenario

- We use slot to represent one basic resource unit. (CPU/memory/disk)
- Tenants submit their resource requirements, in terms of the number of VMs (slots).
 - Each slot host one VM
- For one tenant, it could be one project group, and each VM can be assigned to one group member.
 - The VMs (group members) finish the task cooperatively.

Virtual Machine Placement

- Inter-PM traffic
 - Inter-VM traffic
- The objective
 - Minimize the total inter-PM traffic.

How to determine the communication cost?

 r_{ij} : the VMs placed on PM j of request r_i .

Communication Model

Two communication models

Centralized Model

Distributed Model

 r_{ij} : the VMs placed on PM j of request r_i .

Communication Cost

The traffics between VMs are assumed to be aware in most related works.

Here, we do NOT adopt this assumption.

- We focus on network cost, measured by the number of traffic links between VMs
 - One request may be placed on multiple servers

Problem Statement

- Given a set of requests $R = \{r_i | 0 \le i < n\}$, and a data center that consists of m uniform PMs with c slots for each. There may be traffic between VMs of the same tenant. Present a VM placement such that the overall network cost is minimized.
 - lacksquare ϕ_i : the cost caused by request i
 - $\square r_i$: the requirement of request i
 - objective:

$$min\sum_{i=0}^{n-1}\phi_i$$

Cost Function

Centralized Model Cost Function (CCF)

$$-\phi_i^{(1)} = K_i$$

Distributed Model Cost Function (DCF)

$$-\phi_i^{(2)} = K_i^2$$

 Enhanced Distributed Model Cost Function (E-DCF)

$$-\phi_i^{(3)} = \frac{1}{2} \sum_{\kappa=1}^{K_i} r_i^{(\kappa)} \cdot (r - r_i^{(\kappa)})$$

 K_i : the number of fractions of request i.

Classification

- Only N-cost is discussed, PM-cost is fixed as the minimal number of PMs that can host all of the required VMs.
- Homogeneous case

$$-r_i=r_j=r;$$

- Heterogeneous case
 - otherwise.

Homogeneous Case

- - Recursive algorithm
 - Optimal solution
- DCF
 - Algorithm based on the above recursive algorithm
 - Optimal solution
- E-DCF
 - Recursive algorithm
 - Optimal solution

Recursive algorithm

solution

Basic idea

- Achieve the perfect placement as many as possible, then split the unplaced requests into pieces.
 - Layer
- Perfect placement (Stay Together)
 - All of the required VMs are placed on the same PM.
 - For each layer, the perfect placement may be different, i.e. the number of required VMs varies.
- Piece
 - TPC: terminal-piece

- Piece
 - TPC, terminal piece
 - One piece is placed completely without split at some layer;
 - CPC, continue piece
 - Otherwise.

- There is exactly one TPC for each request.
- There is at most one CPC on each PM.

Solution Structure

 $c = \alpha \cdot r + u$ $r = \beta \cdot u + v$ TPC: r CPC: u

> $c \leftarrow u$ $r \leftarrow v$ TPC: v CPC: w

recursively

$$\boldsymbol{\phi}_i^{(1)} = K_i$$

solution structure

Swap operation

- $-s_i$: a set of pieces placed on PM *i*.
- $-swap(s_i, s_j)$
 - $s_i = s_i$
 - $s_i > s_j$
 - Split s_i into two parts, s_i^* and s_i^{Δ} , such that $s_i^* = s_j$, then swap s_i^* and s_i .
 - It is easy to get s_i^* by splitting ONLY one piece into two parts.
 - $s_i < s_j$

Optimality

Theorem

– The recursive algorithm gives the optimal solution when $\forall i, r_i = r \leq c$, and $\phi_i = \phi_i^{(1)} = K_i$, i.e., the CCF cost function.

Proof

- Case Ω
 - For any PM, the sum of the sizes of the fragments is more than r.
- Fragment

Proof

- There is no case Ω in our solution.
- In the optimal solution, we can remove all of the case Ω .
 - Let r_{ij} be one of the fragment, and s_j be the union of the other fragments of PM j.
 - There must be another fragment r_{ij} , on PM j', and we have $s_i > r_{ij}$, since $s_i + r_{ij} > r$.
 - Swap operation: $swap(s_j, r_{ij'})$.
 - The swan operation will not change the fact

Proof (cont.)

- Repeat the swap operation until there is only one piece for r_i, and the sum of the size of fragments on PM j can be reduced by r.
- There can be no case Ω in the optimal solution.
 - Reduce the optimal solution to our solution.
 - There are α perfect placement in the layer 0.
 - For the remaining pieces, we can do swap operation to gather the pieces of the same tenant as close as possible.

Solution Structure

 $c = \alpha \cdot r + u$ $r = \beta \cdot u + v$ TPC: r CPC: u

> $c \leftarrow u$ $r \leftarrow v$ TPC: v CPC: w

recursively

$$\boldsymbol{\phi}_i^{(1)} = K_i$$

solution structure

- DCF: $\phi_i^{(2)} = K_i^2$
- CCF: the sum of the pieces is minimal.
- The basic idea
 - To minimize the objective function, we should achieve the K distribution like this: 1,1,...,1,2,...,2
 - Swap operation
 - For given number of items, to minimize the sum of the square of items, its sum should be minimized, and it achieves the minimal value when all the

Homogeneous Case - Example

(a) Placement given by Algorithm 1. There are 2 layers, and $K_8 = 3$.

(c) Do $swap(r_{85}, s_4)$, then we have $K_3 = 2, K_8 = 2$. s_3 (blue dashed rectangle) is selected.

(b) The TPC of r_8 is located (red rectangle), and s_4 (red dashed rectangle) is selected.

PM 3

PM 4

PM 5

PM 2

PM 1

PM 2

(d) Do $swap(r_{84}, s_3)$. We achieve the final optimal placement.

PM 3

PM 4

PM 5

Optimality

- Feasibility of the swap operation.
 - There must be at least 1 perfectly placed request on the PMs that contains CPC of r_i .
 - The perfectly placed request will provide its part to be swapped out of the PM.

(b) The TPC of r_8 is located (red rectangle), and s_4 (red dashed rectangle) is selected.

(c) Do $swap(r_{85}, s_4)$, then we have $K_3 = 2, K_8 = 2$. s_3 (blue dashed rectangle) is selected.

Optimality (cont.)

- Let the swap operation start from the TPC of r_i , so it is unnecessary for the PM that contains TPC of r_i .
- Only one perfectly placed pieces on each PM is enough.
 - There is at most one CPC on each PM.
- In fact, we have $\alpha(\alpha > 1)$ perfectly placed pieces on each PM.

Optimality (cont.)

- After the swap operations for all requests that have more than 2 pieces, their piece number becomes to 1.
 - For the other request that participate the swap operation (the perfectly placed request), their piece number becomes to 2.
 - For the other, their piece number remains unchanged.
 - We achieve the optimal K distribution.

Homogeneous Case – E-DCF

- The same algorithm as the case CCF.
 - Recursive algorithm

- \square We assume that r_{iu} , r_{iv} , r_{ju} , r_{jv} are four pieces.
 - The four piece will not coexist in the optimal placement, because we can do $swap(r_{iu}, r_{iv})$ or $swap(r_{iv}, r_{ju})$.
 - □ If $r_{iu} \ge r_{iv}$ and $r_{iu} + r_{iv} > r_{ju}$, then r_{iu}, r_{iv}, r_{ju} will not coexist, since we can do $swap(r_{ju}, r_{iv})$.

Optimality

- From the two facts, we can construct the optimal solution from any give placement.
 - (1)Mark the pieces that have the size equal to r as red; otherwise, black.
 - (2)Select the piece with largest size among the black pieces. (Assume that r_{iu} is selected)
 - (3)Do $swap(r_{ju}, r_{iv})$, as shown above, until no r_{ju} or r_{iv} can be selected. Then mark the new r_{iu} red.

Optimality (cont.)

- The impact of the swap operation (step 3).
 - The piece r_{iu} will be larger.
- Feasibility of the swap operation.
 - $-r_{iu}$ has the largest size among the black pieces.
- When the swap operation will be terminated.
 - $-K_i=1\ (r_{iu}=r)$
 - The other pieces on PM u are all marked as red.
 - If it still have black piece, the swap operation can continue.

Optimality (cont.)

- The red piece will not participate the swap operation.
 - The red piece has the size equal to r; (step 1)
 - There are no black pieces on the PM it located.
- From the construction process, there will be α perfect placement on each PM, and other requests will occupy as fewer PM as possible.
- The result matches the recursive solution.

Solution Structure

$$c = \alpha \cdot r + u$$

 $r = \beta \cdot u + v$
TPC: r
CPC: u

$$c \leftarrow u$$

 $r \leftarrow v$
TPC: v
CPC: w

recursively

solution structure

Heterogeneous Case

- SBP: Sorting-based Placement
- Basic idea: place the requests with larger VM requirements first.
 - Sorting
 - According the number of VMs that tenants require
 - Ascending order
 - \square Place the first item of the sequence (r_0)
 - Case 1: perfect placement
 - \blacksquare Case 2: split r_0 into two pieces

An Example

The inputs:

- $r_1 = 3, r_2 = 6, r_3 = 4, r_4 = 5, r_5 = 7, r_6 = 2, r_7 = 5$
 - Different color
- □ Sorting: 7, 6, 5, 5, 4, 3, 2

PM 1 PM 2 PM 3 PM 4

PM 1 PM 2 PM 3 PM 4

Greedy Algorithm

Basic idea

 The basic idea of GBP is that, for each request, place the required VMs on the current PM as much as possible; when the current PM is fully loaded, then place the part that exceeds the PM capacity to the next PM. Hence, there are at most 2 pieces for each request. In fact, the total number of pieces will not exceed m + n, since there are at most m requests that are split into two pieces.

Approximation Ratio of GA

$$\sum_{i=0}^{n-1} \phi_i^{(1)} < m + n \le 2 \cdot n \le 2 \cdot OPT$$

$$\sum_{i=0}^{n-1} \phi_i^{(2)} \le 4 \cdot n \le 4 \cdot OPT$$

$$\sum_{i=0}^{n-1} \phi_i^{(3)} \le \sum_{i=0}^{n-1} \frac{r_i^2}{4} \le \frac{c^2}{4} \cdot n \le \frac{c^2}{4} \cdot OPT$$

Comparison

Impact of Number of PMs

Conclusion

- VM placement for network cost minimization.
- Homogeneous case
 - Optimal solutions for 3 cost functions
 - CCF, DCF, E-DCF
- Heterogeneous case
 - Approximation algorithm
 - 2-approximation ratio for CCF.

Thank You!

Let's Stay Together: Towards Traffic Aware Virtual Machine Placement in Data Centers

Xin Li

Email: lixin@dislab.nju.edu.cn