Let’s Stay Together: Towards
Traffic Aware Virtual Machine
Placement in Data Centers

Xin L1, Jie Wu, Shaojie Tang, Sanglu Lu

=r=

Nanjing University
Temple University

i

Outline

Background and Scenario
Problem Statement
Homogeneous Case
Heterogeneous Case
Conclusion

Background

Virtual machine (VM) placement

Tenants submit their resource requirements to
the cloud system, and the cloud decides how
to implement the resource allocation.

One of the primary task in virtualization-
based cloud system.

The cost is one of the major concerns for
the cloud providers.

PM-cost
N-cost

Scenario

We use s/otto represent one basic
resource unit. (CPU/memory/disk)

Tenants submit their resource
requirements, in terms of the number of
VMs (slots).

Each slot host one VM

For one tenant, it could be one project

group, and each VM can be assigned to
one group member.

The VMs (group members) finish the task
cooperatively.

Virtual Machine Placement

]
1 Inter-PM traffic I Iy I3
Inter-VM traffic
o The objective
Minimize the total
inter-PM traffic. T4 fetraffics| 4o [€traffics r
PM 1 PM 2 PM 3

How to determine «traffic> inter-PM traffic

the
communication placement for 4 requests
cost? on 3 PMs: 11,175,173, 14.

1ij: the VMs placed on PM j of request 1;.

Communication Model
1

7 Two communication models

g @vo
OO @‘@

Centralized Distributed
Model Model

1j: the VMs placed on PM j of request 7;.

Communication Cost

The traffics between VMs are assumed to
be aware in most related works.

Here, we do NOT adopt this assumption.

We focus on network cost, measured by
the number of traffic links between VMs

One request may be placed on multiple
servers

Problem Statement

Given a set of requests R = {r;|0 < i < n}, and a
data center that consists of m uniform PMs with ¢
slots for each. There may be traffic between VMs
of the same tenant. Present a VM placement such
that the overall network cost is minimized.

@,: the cost caused by request i

r;: the requirement of request (

n—1
min z OF
i=0

objective:

Cost Function

]
* Centralized Model Cost Function (CCF)

- =K,
* Distributed Model Cost Function (DCF)
- ¢ = K?

* Enhanced Distributed Model Cost Function (E-
DCF)

3 1 «K;
-7 =75l =)

K=

K;: the number of fractions of request .

Classification

* Only N-cost is discussed, PM-cost is fixed as
the minimal number of PMs that can host all
of the required VMs.

* Homogeneous case
* Heterogeneous case

— otherwise.

Homogeneous Case

CCF

Recursive algorithm
Optimal solution

DCF

Algorithm based on the above recursive
algorithm

Optimal solution
E-DCF

Recursive algorithm

Optimal solution

Homogeneous Case - CCF

]
- Recursive algorithm

PM /7 terminal case
A
(last layer)
X
T | § I r
x| 7| x <
I — — — — I
C -~ | |
r r r r R vV y V| ~
| |
= = = =
=" ! ~ ~ I
| | Y VoV v
| | |
u u I
| A |
. W W
¥ | | ' | | A
—————— | e — — — — T
; I
resource piece and its size | — . — recursive call —--— - —- —
solution

i~ e

Homogeneous Case - CCF

Basic idea

Achieve the perfect placementas many as
possible, then split the unplaced requests into
pieces.

Layer
Perfect placement (Stay Together)

All of the required VMs are placed on the same
PM.

For each layer, the perfect placement may be
different, i.e. the number of required VMs varies.

Plece
TPC: term/na/—p/ece

o ~rrNS~ g e

Homogeneous Case - CCF

Piece

TPC, terminal piece

One piece is placed completely without split at
some layer;

CPC, continue piece
Otherwise.

There is exactly one TPC for each request.
There is at most one CPC on each PM.

Solution Structure

1
PM /_ terminal case c=a-r+u
A (last layer) r = ﬁ U+ v
Y
r| |r| |r € TPC: r
X X
CPC:u
L |
SR | |
T r r | v R W W [—
= = = : C<u
L _ |
: | P viTIv] vV r < v
ul |uj b— | ; : TPC: v
. I w W r
¥ !— - ‘! | !_ - _ ______: I CPC W
[x] resource piece and its size .. — recursive call —--— - — - —
: recursively
solution
1
structure ¢V =K,

Homogeneous Case - CCF

I I ———
* Swap operation
— 5;: a set of pieces placed on PM i.
— swap(s;, ;)
* 5 =S5
* S > S;
— Split s; into two parts, s; and s;*, such that s/ = s;, then
swap s; and s;.
— Itis easy to get s; by splitting ONLY one piece into two parts.
e 5 < Sj

Optimality

o
* Theorem
— The recursive algorithm gives the optimal solution
when Vi,r; =r < ¢, and ¢; = 4’1‘(1) = K;, i.e., the
CCF cost function.
* Proof
— Case ()
* For any PM, the sum of the sizes of the fragments is
more than r.

— Fragment

Proof

* There is no case () in our solution.

* |n the optimal solution, we can remove all of
the case ().

— Let r;; be one of the fragment, and s; be the union
of the other fragments of PM j.

— There must be another fragment r;;, on PM j', and

we have s; > 1y, since s; +1;; > 7.
— Swap operation: swap(s;, r;;’).

— Tha cwwan nnaratinn will nat rhanoca tha fart

Proof (cont.)

* Repeat the swap operation until there is only
one piece for r;, and the sum of the size of
fragments on PM j can be reduced by 7.

* There can be no case (1 in the optimal solution.
— Reduce the optimal solution to our solution.
— There are a perfect placement in the layer 0.

— For the remaining pieces, we can do swap
operation to gather the pieces of the same tenant

as close as possible.

Solution Structure

1
PM /_ terminal case c=a-r+u
A (last layer) r = ﬁ U+ v
Y
r| |r| |r € TPC: r
X X
CPC:u
L |
SR | |
T r r | v R W W [—
= = = : C<u
L _ |
: | P viTIv] vV r < v
ul |uj b— | ; : TPC: v
. I w W r
¥ !— - ‘! | !_ - _ ______: I CPC W
[x] resource piece and its size .. — recursive call —--— - — - —
: recursively
solution
1
structure ¢V =K,

Homogeneous Case - DCF
_

* DCF: ;) = K?
* CCF: the sum of the pieces is minimal.

* The basic idea

— To minimize the objective function, we should
achieve the K distribution like this: 1,1,...,1,2,...,2
* Swap operation
— For given number of items, to minimize the sum of

the square of items, its sum should be minimized,
and it achieves the minimal value when all the

Homogeneous Case - Example
S

ry Iy T i e M EF) r33 T Tag
Py s Fig Fas
Uiy Frz Ty Ty s iy I Fys Iy -
PM1 PM2 PM3 PM4 PMS5 PM1 PM21 PM3 PM4 PMS
(a) Placement given by Algorithm (b) The TPC of rg is located (red
1. There are 2 layers, and Kg = 3. rectangle), and s, (red dashed rect-
angle) is selected.
gb 2 s || T Fas i1 32 EE i Fas
Fi4 Fig
rhs ! o s
o
fi1 iz Ty s Ky sy Iy; Py | e
PMi PMX PM3I PM4 PMS5 PM1 PM} PM3I PM4 PMS
(c) Do swap(rgs,ss). then we (d) Do swap(rgs, s3). We achieve

have K1 = 2,Ks = 2. s3 (blue the final optimal placement.

dashed rectangle) is selected. 22

Optimality

* Feasibility of the swap operation.

— There must be at least 1 perfectly placed request
on the PMs that contains CPC of ;.

— The perfectly placed request will provide its part
to be swapped out of the PM.

r]_l r l‘_; r“ r r]_l rﬂ r-_,-_ r“ I
Fra
Fri Fys s
iy I'y3 Py Iy, - Iy Iz T3 s
PM1 PM2 PM3 PM4 PMS5 PM1 PM2 PM3 PMJ4 PMS
(b) The TPC of s is located (red (¢) Do swap(rss,sa), then we
rectangle), and s, (red dashed rect- have K3 = 2.Kg = 2. s3 (blue

anele) is selected. dashed rectangle) is selected.

Optimality (cont.)

* Let the swap operation start from the TPC of

13, SO it is unnecessary for the PM that
contains TPC of ;.

* Only one perfectly placed pieces on each PM
IS enough.

— There is at most one CPC on each PM.

* In fact, we have a(a > 1) perfectly placed
pieces on each PM.

Optimality (cont.)
]
* After the swap operations for all requests that

have more than 2 pieces, their piece number
becomes to 1.

— For the other request that participate the swap
operation (the perfectly placed request), their
piece number becomes to 2.

— For the other, their piece number remains
unchanged.

— We achieve the optimal K distribution.

Homogeneous Case — E-DCF

N
-1 The same algorithm as the case CCF.

Recursive algoriihm

$) =Tl = 1)

- We assume that 1y, Ty, Ty, Tjp are four pieces.

The four piece will not coexist in the optimal placement,
because we can do swap(1yy,) or swap(Tiy, tjy)-

If 7y, = Ty and 14y, + 1y > Ty, then Ty, Ty, Tjy, Will not
coexist, since we can do swap (Tjy, tiy)-

Optimality
]
* From the two facts, we can construct the
optimal solution from any give placement.

— (1)Mark the pieces that have the size equal to r as
red; otherwise, black.

— (2)Select the piece with largest size among the
black pieces. (Assume that 7;,, is selected)

— (3)Do swap(7jy, 1), @s shown above, until no
Tjy OT Ty, can be selected. Then mark the new 1y,
red.

Optimality (cont.)
1

* The impact of the swap operation (step 3).
— The piece rj, will be larger.

* Feasibility of the swap operation.
— T1j, has the largest size among the black pieces.

* When the swap operation will be terminated.
—K; =1 (ry =7)
— The other pieces on PM u are all marked as red.

* |If it still have black piece, the swap operation can
continue.

Optimality (cont.)

*s The red piece will not participate the swap
operation.

— The red piece has the size equal to r; (step 1)

— There are no black pieces on the PM it located.

* From the construction process, there will be
perfect placement on each PM, and other
requests will occupy as fewer PM as possible.

* The result matches the recursive solution.

Solution Structure

PM /— terminal case
A
(last layer)
X
T r r
X X 1
| — — — — |
~ I |
r r r R v y Vo
| = |
N — 1!
I— I -~ e
| | Y V||V v
| | |
u I
| A |
) w w
v | I | | A
== | e — e — — =
; |
[x| resource piece and its size .. — .. — recursivecall —--—. - —-. —
solution

structure

c=a-r+u

r=pFf-u+v
TPC: r
CPC: u

c<u
r < v
TPC: v
CPC: w

recursively

Heterogeneous Case

1 SBP: Sorting-based Placement

1 Basic idea: place the requests with larger VM
requirements first.
Sorting
» According the number of VMs that tenants require

» Ascending order

Place the first item of the sequence (7))
» Case 1: perfect placement

» Case 2: split 1y into two pieces

31

An Example

S I —
o1 The inputs:
or=3,1=613=4,1,=515=7,1g=2,17 =15
» Different color

o Sorting: 7, 6, 5, 5, 4, 3, 2

rz1 Faa F43 74 rs1 a2 43 74
(7 (6) (3) (3 (M (6) () (3)
31 I33 4
(1) €« — (3) (3)

PM1 PM2 PM3 PM4 PM1 PM2 PM3 PM4

Greedy Algorithm

]
* Basic idea

— The basic idea of GBP is that, for each request,
place the required VMs on the current PM as
much as possible; when the current PM is fully
loaded, then place the part that exceeds the PM
capacity to the next PM. Hence, there are at most
2 pieces for each request. In fact, the total
number of pieces will not exceed m + n, since
there are at most m requests that are split into
two pieces.

Approximation Ratio of GA
S =

n—1
YoV <m4n<2.n<2 OPT
i=0

Comparison

1.7+ 3.0 50 4
Lo [1GBP 15 [1GBP 1 |—_1GBP
[E SBP 2.6 EZE sBP «w{ |[EES]sBP
N 1.5 14 -]
I] v £
S 14 5 224 S 304
w 1 w 204 W
T - =
= 13 1 & 15] E i 4
E 1.2 ?'- 1.6 -
= - *
] 144 10 4
1.1+
] 1.21]
L . . . 10 . . . 0 FL
12 20 a1 40 17 0 a7 40 12 1] az 40
Capacity of PM (c) Capacity of PM (c) Capacity of PM (c)

(a) CCF (b) DCF (¢) E-DCF

Impact of Number of PMs

I
1.6 -
B
1
1.5 '
1m .. ".\ = = = = = = = =
£ 14 L —=—CCF (GBP)
b N -« -CCF (SBP)
o | e .--a-- DCF (SBP)
§ 12 - L=~ E-DCF(SBP)
< le . K'“-\
1.1{ "~ A ~.
] “'i.._ﬁ_‘ "1.___‘_‘ o
1.04 TTe--9- .—'."._‘;a;“;:-_u_. A -
448 449 450 451 452 453 454 455 456 457
Number of PMs (m)

36

Conclusion

VM placement for network cost
minimization.
Homogeneous case

Optimal solutions for 3 cost functions
CCF, DCF, E-DCF

Heterogeneous case

Approximation algorithm
2-approximation ratio for CCF.

Thank You!

Let’ s Stay Together: Towards Traffic Aware
Virtual Machine Placement in Data Centers

Xin LI

Email:
lixin@dislab.nju.edu.cn

38

